Smart-Web Switch SL902-SWTGW215AS

Web Manual

Ver. 1.0

Revision history

Date	Version	Description
Mar. 05, 2025	V 1.0	The first edition

Contents

Smart-Web Switch	1
SL902-SWTGW215AS	1
Web Manual	1
Ver. 1.0	1
Contents	3
1 Foreword	5
1.1 Target Audience	5
1.2 Manual Convention	5
2 Web Page Login	5
2.1 Log in the Network Management Client	5
2.2 Constitution of Client Interface	6
2.3 Navigation Bar on Web Interface	7
3 Home	8
3.1 Information	8
4 Switch Monitor	9
4.1 MAC Address Table	9
4.2 Port Statistics	10
5 Switch Configuration	10
5.1 Port Setting	10
5.2 Port Mirror	11
5.3 Port Isolation	
5.4 Port Rate Limit	13
5.5 Port Aggregate	14
5.5.1 static	14
5.5.2 LACP	16
5.5 Static MAC	18
6 VLAN Configuration	18
6.1 VLAN	18
6 1 1 VI AN Setting	19

6.1.2 Port VLAN	20
7 Loop Configuration	21
7.1 Loop protocol	21
7.2 STP global	21
7.3 STP port	22
8 QoS Configuration	23
8.1 Port to Queue	25
8.2 Queue Weight	26
9 Advanced	27
9.1 DHCP Snooping	27
9.2 Storm Control	29
9.3 IGMP Snooping	30
9.4 Jumbo Frame	31
10 System Manage	32
10.1 IP Setting	32
10.2 User Management	33
10.3 Device Reboot	33
10.4 Save Configuration	33
10.5 Backup Configuration	34
10.6 Firmware Upgrade	34
10.7 Restore Facory	35

1 Foreword

1.1 Target Audience

This manual is prepared for the installers and system administrators who are responsible for network installation, configuration and maintenance. It assumes that the user has understood all network communication and management protocols, as well as the technical terms, theoretical principles, practical skills, and expertise of devices, protocols and interfaces related to networking.

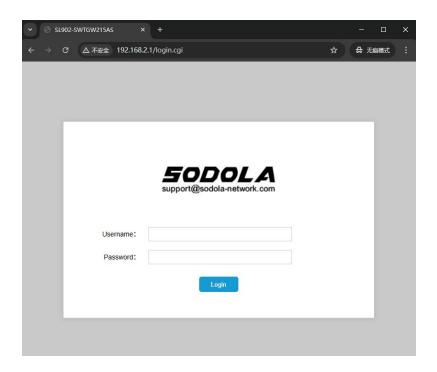
1.2 Manual Convention

The following approaches should prevail.

GUI Convention	Description
Interpretation	Describe operations and add necessary information.
A	Remind the user of cautions as improper operations will result
Notice	in data loss or equipment damage.

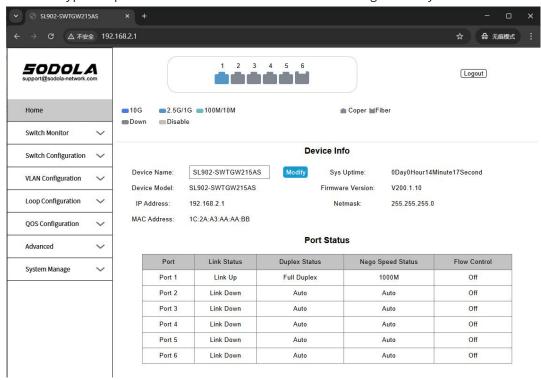
2 Web Page Login

2.1 Log in the Network Management Client


Type in the default switch address: http://192.168.2.1 and press "Enter".

Description:

Browser standards: superior to IE 9.0, Chrome 23.0 and Firefox 20.0


Keep the IP network segment of PC consistent with that of switch but differentiate the IP address as you log in. Set PC's IP address of 192.168.2.x and the subnet mask of 255.255.255.0 for the first login (1< \times < 254).

A login window appears as follows. Type in the default username of "admin" and the password of "admin". Click the "Log in" to see the switch system.

2.2 Constitution of Client Interface

The typical operation interface of Web network management system is as follows.

2.3 Navigation Bar on Web Interface

Menu items such as System, Configuration, Security, Monitoring, and Tools are available on the web network management client. Each item contains submenus. Navigation bar is detailed as follows:

menu items	Submenus	Secondary Submenus	Description
home	information		Display the port
			state and product
Control Manitan	NAAC - dalaa - Talala		info
Switch Monitor	MAC address Table		Display the mac address table
	Port Statistics		Display Port Data
			Statistics
Switch configuration	Port Setting		Configure and view
			all ports
	Port Mirror		Configure and view
			the Port-based
	Dowt loolotion		Mirroring
	Port Isolation		Configure and view the Port Isolation
	Port Rate Limit		Configure and view
	TOTE NGES EITHE		the Bandwidth
			Contro
	Port Aggregate	static	Configure and view
			Trunk Group
			Setting information
		LACP	Configure and view
			LACP Group
	Static MAC		Setting Configure and view
	Static MAC		Static MAC
VLAN Configuration	VLAN	VLAN Setting	Configure and view
			the VLAN
		Port VLAN	Configure and view
			the Prot of port
Loop Configuration	Loop protocol		Configure and view
	OTD OL L		Loop Protocol
	STP Global		Configure and view
	STP Port		STP global
	SIPPUIL		Configure and view STP port
			στι μοιτ

QoS Configuration	Port to Queue	Configure and view
		the Port to Queue
	Queue Weight	Configure and view
		Queue Weight
Advanced	DHCP Snooping	Configure viewing
		DHCP Snooping
		information
	Storm Control	Configure and view
		Storm Control
	IGMP Setting	Configure viewing
		IGMP Snooping
	1li a Fuanca	information
	Jumbo Frame	Configure and view the Jumbo Frame
System Manage	IP Setting	Configure and view
System Manage	ir setting	the management IP
		address
	LOgin Setting	Configure and view
		the management
		account
	Setting reboot	Restart system
	Save Configuration	Save Configuration
	Backup	Save and Restore
	Configuration	Configuration
	Firmware Upgrade	Updating and
		upgrading device
		software versions
	Factory Default	Factory reset

3 Home

3.1 Information

Display system information, including model, version, MAC, etc. Instructions:

1. Click the "Home" in the navigation bar as follows:

Device Info

Device Name: SL902-SWTGW215AS

Modify

Sys Uptime: 0Day0Hour14Minute17Second

Device Model: SL902-SWTGW215AS

Firmware Version: V200.1.10

IP Address: 192.168.2.1

Netmask: 255.255.255.0

MAC Address: 1C:2A:A3:AA:ABB

4 Switch Monitor

4.1 MAC Address Table

Operation steps:

1. Click on the 'Switch Monitor > MAC Address Table' menu in the navigation bar to enter the MAC Address Table page."

MAC Address Table Clear MAC Address Type Port VLAN ID 00:0E:C6:3C:0E:0A dynamic 1 1 1C:2A:A3:AA:AA:BB dynamic CPU 1 Total 2 Items, Current 1-10 Items, PerPage 10 ✓ Items << < 1 > >> 1 /1 Pages Goto

2. MAC address table needs constant updates to cater to network changes. It automatically generates entries that are limited by their lifetime (i.e. aging time). Those entries not refreshed after expiration will be deleted. The aging time of an entry will be recalculated if its record is refreshed before expiration.


Proper aging time helps to achieve the aging target of MAC address. Shortage of aging time may lead many switches broadcast to discover the packets of destination MAC addresses, thus influencing the switch performance.

Aging too long can cause the switch to save outdated MAC address entries, thus exhausting the forwarding resources and failing to update the forwarding table based on network changes.

The switch may remove valid MAC address table entries due to too short aging time, thus reducing forwarding efficiency. In general, the aging time recommended is 300 seconds by default.

Instructions for aging time setting:

1. Click the "Switch Monitor > MAC Address Table", in the navigation bar as follows:

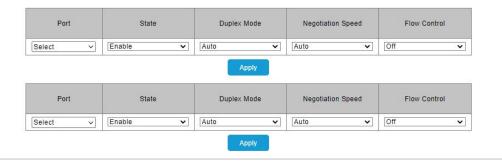
4.2 Port Statistics

Display port statistics information.

Instructions:

1. Click the "Switch Monitor > Port Statistics", in the navigation bar as follows:

Port	State	Link Status	TxGoodPkt	RxGoodPkt	TxGoodBytes	RxGoodBytes
Port 1	Enable	Link Up	2269	3461	1504273	381307
Port 2	Enable	Link Down	0	0	0	0
Port 3	Enable	Link Down	0	0	0	0
Port 4	Enable	Link Down	0	0	0	0
Port 5	Enable	Link Down	0	0	0	0
Port 6	Enable	Link Down	0	0	0	0
Port 7	Enable	Link Down	0	0	0	0
Port 8	Enable	Link Down	0	0	0	0
Port 9	Enable	Link Down	0	0	0	0


5 Switch Configuration

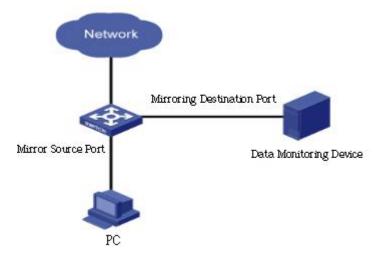
5.1 Port Setting

Querying and configuring Ethernet ports.

Instructions:

1. Click the "Switch Configuration > Port Setting" in the navigation bar as follows:

Port	04-4-	Duplex	Mode	Negotiatio	on Speed	Flow C	ontrol
Port	State	Config Attribute	Actual Status	Config Attribute	Actual Status	Config Attribute	Actual Status
Port 1	Enable	Auto	Full Duplex	Auto	1000M	Off	Off
Port 2	Enable	Auto	Half Duplex	Auto	10M	Off	Off
Port 3	Enable	Auto	Half Duplex	Auto	10M	Off	Off
Port 4	Enable	Auto	Half Duplex	Auto	10M	Off	Off
Port 5	Enable	Auto	Half Duplex	Auto	10M	Off	Off
Port 6	Enable	Auto	Half Duplex	Auto	10M	Off	Off
Port 7	Enable	Auto	Half Duplex	Auto	10M	Off	Off
Port 8	Enable	Auto	Half Duplex	Auto	10M	Off	Off
Port 9	Enable	Auto	Half Duplex	Auto	10M	Off	Off


Interface data are as follows.

Query Items	Description
State	Enable or disable port
Speed/Duplex	Configure the rate and negotiation status of the port. You can configure the forced 10M/Half, 10M/Full, 100M/Half,100M/Full 1000M/Full , 2500M/Full
Flow Control	After it is enabled on both local network and opposite network devices, the local one will notify the other to stop transmitting messages in the presence of network congestion. The opposite one will execute the command temporarily to ensure zero message loss. Off-Disabled reception and transmission of PAUSE frame; On-Enabled reception and transmission of PAUSE frame;

5.2 Port Mirror

Port Mirroring copies the message of a specified switch port to the destination port. The copied port is the Source Port, and the copying port is the Destination Port. Destination Port accesses to data inspection devices so that users can analyze the

messages received to monitor network and troubleshoot as follows:

Instructions:

1. Click the "Switch Configuration > Port Mirror", in the navigation bar as follows:

Interface data are as follows

Configuration Items	Description
Mirror Direction	Enable or disable port mirroring, support Rx, Tx, and Both
Destination Port	Only one ordinary physical port can be selected, excluding link aggregation port and source port.
Source mirror port	List of mirrored source ports

5.3 Port Isolation

Messages of broadcast, multicast, etc. will flood at each port even though the flow needs no mutual communication sometimes. Under this circumstance, port isolation can separate the messages between two ports.

Instructions:

1. Click the "Switch Configuration > Port Isolation", in the navigation bar as follows:

Port 1	-	Port 1	
Port 2		Port 2	
Port 3		Port 3	
Port 4		Port 4	
Port 5		Port 5	
Port 6	*	Port 6	*

Port	Port Isolation List	
Port 1	1-9	
Port 2	1-9	
Port 3	1-9	
Port 4	1-9	
Port 5	1-9	
Port 6	1-9	
Port 7	1-9	
Port 8	1-9	
Port 9	1-9	

Interface data are as follows

Configuration Items	Description
Port	Port list
Port Isolation List	Establish the member list of interworking group

5.4 Port Rate Limit

It refers to the rate restriction on transmitting and receiving data at physical interfaces.

Restrict the rate limiting at the egress before transmitting flow, thus controlling all outgoing message flow;

Restrict the rate limiting at the ingress before receiving flow, thus controlling all incoming message flow;

Instructions:

1. Click the "Switch Configuration > Port Rate Limit", in the navigation bar as follows:

Port	Ingress Rate Limit (Kbit/sec)	Egress Rate Limit (Kbit/sec)
Select V	16-2500000	16-2500000
	Apply	
Port	Apply Ingress Rate Limit (Kbit/sec)	Egress Rate Limit (Kbit/sec)

Port	Ingress Rate Limit (Kbit/sec)	Egress Rate Limit (Kbit/sec)
Port 1	Unlimited	Unlimited
ort 2	Unlimited	Unlimited
Port 3	Unlimited	Unlimited
ort 4	Unlimited	Unlimited
ort 5	Unlimited	Unlimited
ort 6	Unlimited	Unlimited
Port 7	Unlimited	Unlimited
Port 8	Unlimited	Unlimited
Port 9	Unlimited	Unlimited

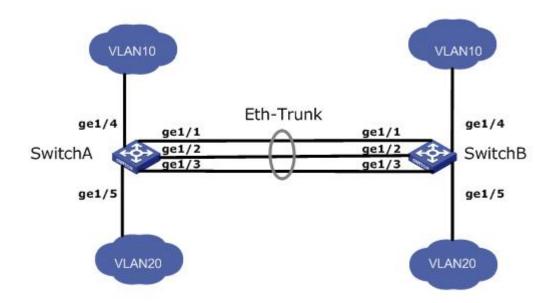
Interface data are as follows

Configuration Items	Description	
Туре	Ingress: inbound port direction	
	Degree: direction of outgoing port	
State	Enable or disenable port restrictions	
Rate	Rate limit, Port1-8 range: 16 to 2500000kb,Port9 range:16 to 10000000kb	

5.5 Port Aggregate

5.5.1 static

Link Aggregation broadens bandwidth and reliability by bundling a group of physical interfaces into a single logical interface.


LAG (Link Aggregation Group) is a logical link bundled by multiple Ethernet links (Eth-Trunk).

Ceaselessly expanding network size increases users' demands of link bandwidth and reliability. Traditionally, high-speed interface board or the compatible equipment is usually replaced to optimize bandwidth, which is expensive and inflexible.

Link Aggregation Technology bundles multiple physical interfaces into a single logical

interface without upgrading hardware. Its backup mechanism not only improves reliability, but also shares the flow load on different physical links.

As shown below, Switch A is linked with Switch B through three Ethernet links which are bundled into an Eth-Trunk logical link. Its bandwidth equals to that of the three links in total, thus broadening the bandwidth. Meanwhile, these three links back up mutually to be more reliable.

When there are the following requirements, link aggregation can be configured to achieve:

- When the bandwidth between two switch devices connected through a link is insufficient.
- When the reliability of connecting two switch devices through a link does not meet the requirements.

Link aggregation is divided into static mode and LACP mode based on whether the Link Aggregation Control Protocol (LACP) is enabled or not. In static mode, the establishment of Eth Trunk and the addition of member interfaces are manually configured without the involvement of link aggregation control protocols. In this mode, all active links participate in data forwarding and evenly share traffic, hence it is called load sharing mode. If an active link fails, the link aggregation group automatically shares the traffic equally among the remaining active links. When it is necessary to provide a larger link bandwidth between two directly connected devices and the devices do not support the LACP protocol, static mode can be used.

Instructions:

1. Click the "Switch Configuration > Port Aggregate", in the navigation bar as follows:

Interface data are as follows

Configuration Items	Description
Group ID	There are 2 LAGs numbering from 1 to 2.
Ports	Up to 4 member ports are available in LAG.

5.5.2 LACP

LACP (Link Aggregation Control Protocol), based on IEEE 802.3ad Standard, dynamically aggregates and disaggregates links. It exchanges info with the opposite network devices through LACPDU (Link Aggregation Control Protocol Data Unit). After a port uses LACP, it will inform the opposite network device of system priority, system MAC, port priority and No., and operation Key by transmitting a LACPDU. The opposite device will compare such info with that saved by other ports after receiving it, thus reaching an agreement on port participation in or quitting from a dynamic aggregation.

Dynamic LACP aggregation is automatically created or deleted by system, that is, internal ports can be added or removed by themselves. Only the ports connected to a same device with the same rate, duplex, and basic configuration can be aggregated. Instructions for adding a dynamic link aggregation:

1. Click the "Switch Configuration > Port Aggregate" in the navigation bar, select the LAG ID and LACP mode, "Edit" them as follows:

2. Click the "Switch Configuration > Port Aggregate" Select LACP, select two ports to add as one LACP group

Interface data are as follows

Configuration	Description
Items	
Туре	Static mode: When it is necessary to increase the bandwidth or reliability between two devices, and one of the devices does not support the LACP protocol, a static link aggregation can be created on the device and multiple member interfaces can be added to increase the bandwidth and reliability between the devices.
	LACP mode: In dynamic LACP mode, the link between two devices has the ability of redundant backup. When some links fail, the backup link is used to replace the faulty link, maintaining uninterrupted data transmission.
System Priority	LACP determines the active and passive modes between two devices subject to priority standard.
Port	Port list
Port Priority	LACP determines the dynamic LAG member mode subject to the port priority with a superior system.
Timeout	It decides the transmission frequency of LACP messages.

Description:

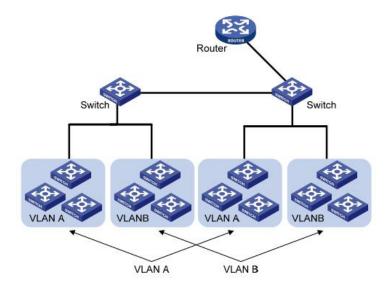
Please make sure there is no member interface accessing the Eth-Trunk before changing its work pattern, otherwise it fails.

5.5 Static MAC

Static table is manually configured by users and distributed to each interface board, which won't age.

Instructions:

1. Click the "Switch Configuration > Static MAC", in the navigation bar as follows:

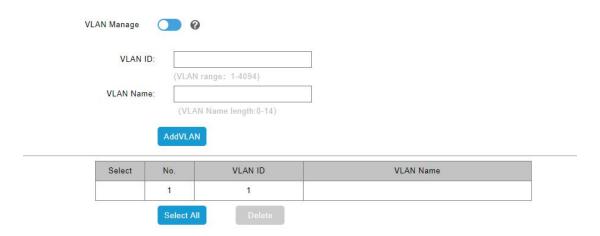

Interface data are as follows.

Configuration Items	Description
MAC Address	Enter the new MAC address e.g.: HH:HH:HH:HH:HH
VLAN ID	Specify the VLAN ID
Port	Select the interface type and enter the port list

6 VLAN Configuration

6.1 VLAN

VLAN is formulated not restricted to physical locations, which means the hosts in a same VLAN can be placed at will. As shown below, each VLAN, as a broadcast domain, divides a physical LAN into logical LANs. Hosts can exchange messages by means of traditional communication. For the hosts in different VLANs, the device such as router or L3 switch is a must.


VLAN is superior to the traditional Ethernet in terms of:

- Broadcast domain coverage: the broadcast message in a LAN is limited in a VLAN to save the bandwidth and handle the network-related issues more efficiently.
- LAN security: VLAN hosts fail to communicate with each other since the messages are separated by the broadcast domain in the data link layer. They need a router or a Layer 3 switch for Layer 3 forwarding.
- Flexibility of creating a virtual working team: VLAN can create a virtual working team beyond the control of physical network. Users have access to the network without changing the configuration if their physical locations are moving within the scope. This management switch is compatible with VLAN types based on 802.1Q, protocols, MAC, and ports. For default configuration, 802.1Q VLAN mode should be adopted. Port VLAN is divided subject to a switch's interface No. Network administrator gives each switch interface a different PVID, namely a port default VLAN. If a data frame without a VLAN tag flows into a switch interface with a PVID, it will be marked with the same PVID, or it will get rid of an additional tag even though the interface has a PVID.
- The solution to a VLAN frame depends on the interface type, which eases member definition but re-configures VLAN in case of member mobility.

6.1.1 VLAN Setting

1. Click the "VLAN Configuration > VLAN Setting", in the navigation bar as follows:

VLAN List

6.1.2 Port VLAN

The setting page function allows selecting the Access and Trunk port types.

1. Click the "VLAN Configuration > Port VLAN", in the navigation bar as follows:

Port	Port vlan type	Access VLAN	Native VLAN	Trunk vlan
Port 1	Access	1	-	323
Port 2	Access	1	-	(8)
Port 3	Access	1	-	Set
Port 4	Access	1		(2)
Port 5	Access	1	313	929
Port 6	Access	1	-	141
Port 7	Access	1	8-8	(1
Port 8	Access	1		150
Port 9	Access	1	-	72.

Interface data are as follows

Configuration Items	Description
VLAN ID	It is required to select an ID ranging from 1 to 4,094
Native VLAN	Setting the PVID of a port

20

7 Loop Configuration

7.1 Loop protocol

The device sends loop detection packets and checks whether the packets are returned to the device (the receiving and sending interfaces are not required to be the same) to check whether loops exist. If a port receives a loop detection packet from the local device, it is determined that the link to which the port resides has a loop. When a loop occurs on the network, the LED of the corresponding port blinks (blocking the loop when loop avoidance is enabled) to alert the network administrator that a loop exists on the port

Instructions:

1. Click the "Loop Configuration > Loop Protocol", in the navigation bar as follows:

Interface data are as follows.

Configuration Items	Description
Loop Protocol	off, loop detection, loop Prevention, Spanning tree

7.2 STP global

Fast spanning tree protocol (RSTP) is used to eliminate the physical loop of data link layer in LAN. Its core is fast spanning tree algorithm. RSTP is fully downward compatible with STP protocol. In addition to the functions of avoiding loops and dynamically managing redundant links like the traditional STP protocol, RSTP greatly shortens the topology convergence time. Under the ideal network topology scale, all switching devices support RSTP protocol, and when configured properly, the time to restore stability after topology

changes (link up / down) can be controlled at the second level. The main functions of RSTP can be summarized as follows:

- 1. Discover and generate an optimal tree topology of LAN;
- 2 \ Discover and recover the topology failure, automatically update the network topology, enable the backup link, and maintain the best tree structure; Instructions:
- 1. Click the "Loop Configuration > STP global", in the navigation bar as follows:

Spanning Tree Status	Disable		
Version	RST	P	~
Priority	327	68	~
Max Aging Time	20	(6~40 Sec)	
Hello Time	2	(1~10 Sec)	
Forward Delay	15	(4~30 Sec)	
Root Priority	32768		
Root MAC Address	1C:2A:A3:1A:1A:1A		
Root Path Cost	0		
Root Port	-		
Root Maximum Age	20 Sec		
Root Hello Time	2 Sec		
Root Forward Delay	15 Se	2	

Apply

Interface data are as follows.

Configuration Items	Description
Force Version	Configure view STP mode
Maximum Age	Configure view maximum age time
Hello Time	Configure view Hello time
Forward Delay	Configure and view forwarding delay time

7.3 STP port

Instructions:

1. Click the "Loop Configuration > STP port", in the navigation bar as follows:

Port	State	Role	Path Cost		Barrage.	P2P		Edge	
			Config	Actual	Priority	Config	Actual	Config	Actual
Port 1	Forwarding	Disabled	Auto	20000	128	Auto	True	False	False
Port 2	Forwarding	Disabled	Auto	2000000	128	Auto	False	False	False
Port 3	Forwarding	Disabled	Auto	2000000	128	Auto	False	False	False
Port 4	Forwarding	Disabled	Auto	2000000	128	Auto	False	False	False
Port 5	Forwarding	Disabled	Auto	2000000	128	Auto	False	False	False
Port 6	Forwarding	Disabled	Auto	2000000	128	Auto	False	False	False
Port 7	Forwarding	Disabled	Auto	2000000	128	Auto	False	False	False
Port 8	Forwarding	Disabled	Auto	2000000	128	Auto	False	False	False
Port 9	Forwarding	Disabled	Auto	2000000	128	Auto	False	False	False

Interface data are as follows.

Configuration Items	Description
Path Cost	Configure view port path Cost
Priority	Configure view port priority
P2P	Configure and view P2P
Edge	Configure view edge ports

8 QoS Configuration

QoS (Quality of Service) assesses the ability of service providers to meet customer needs and the ability of transmitting packets over the Internet. Diversified services can be assessed based on different aspects. QoS usually refers to the evaluation of service capabilities that support core requirements such as bandwidth, delay, delay variation, and packet loss rate during delivery. Bandwidth, also known as throughput, refers to the average business flow within a certain period of time, with the unit of Kbit/s. Delay refers to the average time required for business flowing through the network. For a network device, the followings are general levels of delay requirements. There are two delay levels, that is, the high-priority business can be served as soon as possible by scheduling method of priority queue, while the low-priority business gets services after that. Delay variation refers to the time change of business flowing through the network. Packet loss

rate refers to the percentage of lost business flow during transmission. As modern transmission systems are very reliable, information is often lost in network congestion. Packet loss due to queue overflow is the most common situation.

All messages in a traditional IP network are treated equally. Every network device processes the messages on a FIFO basis, and makes every effort to transmit them to destinations without guaranteeing reliability, transfer delay, or other performance.

Network service quality is constantly improved as new applications keep springing up in the rapidly changing IP network. For example, VoIP, video and other delay-sensitive services have set higher standards on message transmission delay. Message transmission in a short period has been the common trend. In order to support voice, video and data services with different requirements, the network needs to identify business types and provide corresponding services.

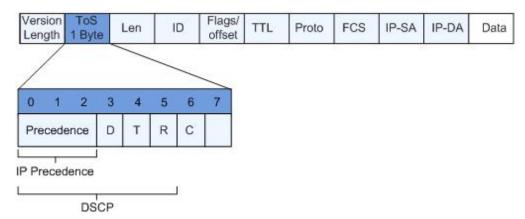
The ability to distinguish business types is the prerequisite to provide corresponding services, so the traditional best-effort service no longer meets the application needs. Therefore, QoS comes into being. It regulates the network flow to avoid and handle network congestion and reduce packet loss rate. Meanwhile, users can enjoy dedicated bandwidths while business can improve service quality, thus perfecting the network service capacity.

QoS priorities vary with message types. For instance, the VLAN message uses 802.1p, also known as the CoS (Class of Service) field, while the IP message uses DSCP. To maintain the priority, these fields need to be mapped at the gateway connected with various networks when messages flow through the network.

802.1p priority in the VLAN frame header

Typically, VLAN frames are interacted between Layer 2 devices. The PRI field (i.e. 802.1p priority), or CoS field, in the VLAN frame header identifies the quality of service requirements according to the definitions in IEEE 802.1Q.

802.1p priority in the VLAN frame



The 802.1Q header contains 3-bit PRI fields. PRI field defines 8 CoS of business priority ranging from 7 to 0 from high to low.

IP Precedence/DSCP Field

According to RFC791 definition, ToS (Type of Service) domain in the IP message header is composed of 8 bits. Among them, the 3-bit long Precedence field, as located in the following, identifies the IP message priority.

IP Precedence/DSCP Field

0 to 2 bits are Precedence fields representing the 8 priorities of message transmission ranging from 7 to 0 from high to low, with either Level 7 or 6 as the highest priority that is generally reserved for routing or updating network control communication. User-level applications only have access to Level 0 to 5.

ToS domain, in addition to Precedence fields, also includes D, T and R bits: D-bit represents the Delay requirement (0 for normal delay and 1 for low delay). T-bit represents the throughput (0 for normal throughput and 1 for high throughput). R-bit represents the reliability (0 for normal reliability and 1 for high reliability). ToS domain reserves the 6 and 7 bits.

RFC1349 redefines the ToS domain by adding a C-bit to represent the Monetary Cost. The IETF DiffServ group then redefines the 0 to 5 bits of ToS domain in the IPv4 message header of RFC2474 as DSCP and renames it as DS (Differentiated Service) byte as shown in the figure above.

The first 6 bits (0-5 bits) of DS field distinguish the DSCP (DS Code Point), and the higher 2 bits (6-7 bits) are reserved. The lower 3 bits (0-2 bits) are CSCP (Class Selector Code Point), with the same CSCP value representing the DSCP of the same class. DS nodes select corresponding PHB (Per-Hop Behavior) according to DSCP values.

8.1 Port to Queue

Sets processing priorities for different tags of the data frame

1. Click the "QoS Configuration > Port to Queue", in the navigation bar as follows:

Port	Queue
Port 1	1
Port 2	1
Port 3	1
Port 4	1
Port 5	1
Port 6	1
Port 7	1
Port 8	1
Port 9	1

Interface data are as follows

Configuration Items	Description
Queue	1-8

8.2 Queue Weight

When the weight is strict priority, it is equivalent to SP, and when the weight is 1-15, it is equivalent to WRR (weighted cyclic Scheduling algorithm).

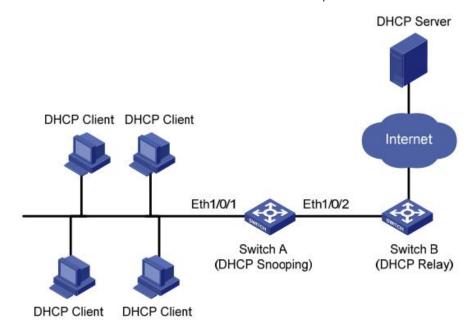
1. Click the "QoS Configuration >Queue Weight", in the navigation bar as follows:

Queue	Weight
1	Strict priority
2	Strict priority
3	Strict priority
4	Strict priority
5	Strict priority
6	Strict priority
7	Strict priority
8	Strict priority

Interface data are as follows.

Configuration Items	Description
Weight	The default value is strict priority. The weight ranges from 1
	to 15

9 Advanced


9.1 DHCP Snooping

For sake of security, the network administrator may need to record the IP address of a user surfing the Internet and to confirm the correspondence between the IP address obtained from DHCP Server and the host's MAC address.

Switch can record the user's IP address through the secure DHCP relay at the network layer.

Switch can monitor DHCP messages and record the user's IP address through DHCP Snooping at the data link layer. In addition, private DHCP Server in the network may lead to wrong IP address for the user. To ensure that users obtain IP addresses through legal DHCP Server, the DHCP Snooping security mechanism divides the ports into Trust Port and Untrust Port.

Trust Port directly or indirectly connects legal DHCP Server. It forwards the DHCP messages received to ensure the correct IP address for DHCP Client. Untrust Port connects illegal DHCP Server. DHCPACK and DHCPOFFER messages received from the DHCP Server on the Untrust Port will be discarded to prevent incorrect IP addresses.

Typical Networking of DHCP Snooping

The following methods are used to obtain the IP address and user MAC address from DHCP Server:

- Snooping the DHCPREQUEST message
- Snooping the DHCPACK message

Enable DHCP Snooping

Instructions:

1. Click the "Advanced > DHCP Snooping". DHCP Snooping interface is divided into global configuration and port configuration. Select the port to be modified in the port configuration and "Edit" the details as follows:

Interface data are as follows.

Configuration Items	Description
State	Enable and disable the DHCP Snooping
VLAN	Valid VLAN No. of DHCP Snooping
Port	Configure the port No. of DHCP Snooping
Trust	Whether the port is a Trust Port

9.2 Storm Control

Storms generated via broadcast, unknown multicast and unicast messages are prevented as follows. These messages will be suppressed subject to packet rates respectively. The average rate of the messages received by monitoring interfaces will be compared with the max threshold configured during an inspection interval. Configured storm policing will be performed at this interface if the average rate exceeds the max threshold.

When a L2 Ethernet interface receives the broadcast, unknown multicast or unicast messages, the device will forward them to other L2 interfaces in a same VLAN (Virtual Local Area Network) if the egress interface cannot be recognized according to destination MAC addresses. As a result, broadcast storm may occur to degrade device operation performance.

Three kinds of message flow can be controlled by storm policing characteristics to stay away from broadcast storms.

Instructions:

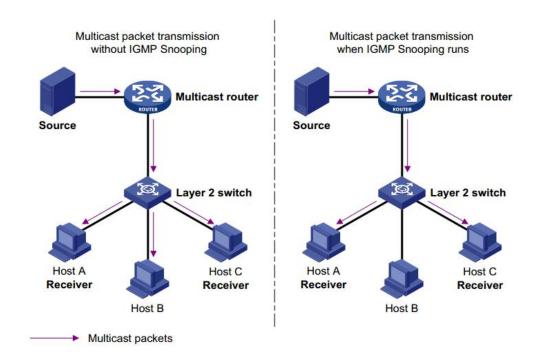
1. Click the "Advanced > Storm Control", in the navigation bar as follows:

Port	Broadcast Rate (Kbit/sec)	Known Multicast Rate (Kbit/sec)	Unknown Multicast Rate (Kbit/sec)	Unknown Unicast Rate (Kbit/sec
Select v	16-2500000	16-2500000	16-2500000	16-2500000
		Apply		
Port	Broadcast Rate (Kbit/sec)	Known Multicast Rate (Kbit/sec)	Unknown Multicast Rate (Kbit/sec)	Unknown Unicast Rate (Kbit/sec
Port Select >	Broadcast Rate (Kbit/sec)	Known Multicast Rate (Kbit/sec)		Unknown Unicast Rate (Kbit

Port	Broadcast Rate (Kbit/sec)	Known Multicast Rate (Kbit/sec)	Unknown Multicast Rate (Kbit/sec)	Unknown Unicast Rate (Kbit/sec
Port 1	Off	Off	Off	Off
Port 2	Off	Off	Off	Off
Port 3	Off	Off	Off	Off
Port 4	Off	Off	Off	Off
Port 5	Off	Off	Off	Off
Port 6	Off	Off	Off	Off
Port 7	Off	Off	Off	Off
Port 8	Off	Off	Off	Off
Port 9	Off	Off	Off	Off

Default

Interface data are as follows.


Configuration Items	Description
Storm Type	The storm type, like Broadcast, Multicast, Unicast
Port	Port list
State	Enable or disable storm control
Rate	Rate ranges from 16 to 10r,000,000 Kbps

9.3 IGMP Snooping

IGMP Snooping (Internet Group Management Protocol Snooping) is a constraint mechanism on L2 devices to manage and control multicast groups.

By analyzing the IGMP messages received, L2 devices establish a mapping between ports and MAC multicast addresses and forward the multicast data accordingly.

As shown below, multicast data are transmitted on L2 without IGMP snooping. When IGMP snooping runs, known multicast group data are transmitted to specified receivers while unknown multicast data are still on Layer 2.

Instructions:

1. Click the "Advanced > IGMP Setting", in the navigation bar as follows:

Interface data are as follows.

Configuration Items	Description
Enable	Enable or disable the IGMP Snooping
Dump IGMP entry	Display multicast group entries

9.4 Jumbo Frame

Set the MTU (Maximum Transmission Unit) of the port Instructions:

1. Click the "Advanced > Jumbo Frame", in the navigation bar as follows:

Interface data are as follows

Configuration Items	Description
Jumbo Frame	Set the MTU of the port

10 System Manage

10.1 IP Setting

Change the management IP address on web interface

1. Click the "System Manage > IP Setting" in the navigation bar as follows:

Interface data are as follows.

Query Items	Description
DHCP Setting	Enable: Enable DHCP client in system
	Disable: Disable DHCP client
IP Address	Manager IP address

Netmask	Manager IP mask
Gateway	Manager IP default gateway

10.2 User Management

Users can check and modify the current username and password of the switch. Instructions:

1. Click the "System Manage > User Management" in the navigation bar as follows:

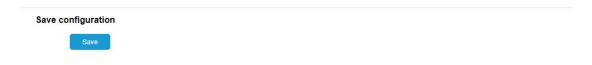
Interface data are as follows.

Query Items	Description
New Username	New Username
New Password	New Password
Confirm Password	Enter the new user name again

10.3 Device Reboot

Restart the system.

Instructions


1. Click the "System Manage > Device Reboot", in the navigation bar as follows:

10.4 Save Configuration

Instructions


1. Click the "System Manage > Save Configuration", in the navigation bar as follows:

10.5 Backup Configuration

System configuration upgrade or backup Instructions

1. Click the "System Manage > Backup Configuration", in the navigation bar as follows:

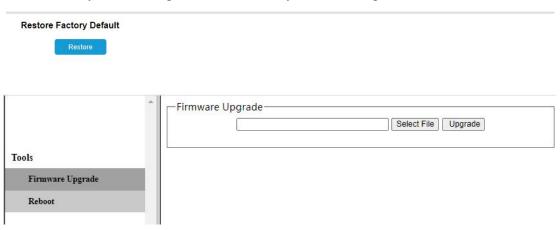
Interface data are as follows.

Configuration	Description
Items	
Backup	Backup configuration
Restore	Upload configuration

10.6 Firmware Upgrade

System version firmware upgrade Instructions:

1. Click the "System Manage > Firmware Upgrade", in the navigation bar as follows:


Note: After clicking OK, do not power off during the upgrade process, stay on the upgrade page for about 1 minute until the upgrade is complete

10.7 Restore Facory

Restore factory settings

Instructions

1. Click the "System Manage > Restore factory", in the navigation bar as follows:

